The Frontiers of New Energy Paradigm: Cultivating the Courage to Create The New Dynamics

Partha S. Ghosh

Global Energy Scenario The Fletcher School Our Planet's Energy Future is a matter of Choice, <u>Not</u> <u>Fate</u>, a matter developing clear logic in midst of *confusion* and *chaotic views*

biofuel

Contents

• Laws of Large Numbers & Network Effect? Slow Pace of Large scale world wide Energy disruption?

 More & better of the Same or New Game? Market Mechanisms vs. Cross Border Strategic Diplomacy?

• A Call for a Renaissance: *Time to rethink, repurpose and reform?*

Since the Early Nineteen Hundreds the world economy has developed extractive relationship with nature

Early days of Electricity & Auto

2006

Era of Extraction & Automation

Overcoming barriers of socio-economic development New Realization of space and time Supply Infrastructure to fuel demand

Most of the world however is still in the early stage of Economic development

Energy Scenarios ? (Terawatt Challenge)
Billions of people x kilowatts/person = Terawatts
Today: 6.3 billion people x 2.5 kW/person = 16

With 9 billion people at Japanese energy efficiency (5kWcapita): 9 B people x 5 kW/capita = 45

With 12 billion people at the 1970 US energy use rate of 10 kW/capita: 12 B people x 10 kW/capita = 120

For example China and India alone could change the politics of natural gas

Future Natural Gas requirement of Asian countries

Country	2001	2010	2015	2020	2025
India	22	65	90	114	143
China	28	54	74	102	142
Japan	79	91	99	108	119
South Korea	20	28	37	43	51
Other Asia	139	153	173	198	230
Total	288	391	473	565	685

(In BCM)

Forecasting will continue to be Futile

Higher Prices might enable more risk taking: e.g. Convergence of Technologies for ultra deep drilling but How Deep?

Energy Speech 11 09

Certainty of Global CO₂ emissions will continue = Slow Pace of Dangerous Change

World Carbon Dioxide Emission in Million Metric Tons (1980 to 2050*)¹

In fact, multiple Powerful Forces at Work?

Innovation in Global Markets: Partha S Ghosh MIB Fall 2009

Strictly for The Fletcher School

Mega Challenge = Managing a Mega Transition to avoid Mega disruption

Complex Politics of 3. Supply Chain

Strictly for The Fletcher School Innovation in Global Markets: Partha S Ghosh

- New Paradigm of Knowledge Creation & 2. **Recycling**?
- 3. Hybrid Infrastructure ?

Mega Transition through holistic view of the linkages

Energy Map (Supply and demand side linkages)

Strictly for The Fletcher School

Risk Management Capacity Will Need to Be Fundamentally Reviewed

Business System (Simplified)

Supply side possiblities?

Multiple different technologies will come to play: Vision of NextGen Distributed Power Infrastructure

The Virtual Power Plant

- Aggregates the output of thousands of micropower technologies
- Peak shaving becomes power trading on the wholesale market
- Coordination and control through a new communications infrastructure

At National level countries will need to strategize and plan terra scale Systems Engineering

As a result Shape of things to come...

...beyond carbon?

Innovation in Global Markets: Partha S Ghosh MIB Fall 2009

Strictly for The Fletcher School

New Accounting for Depletion and Ecology

Note : *These are only indicative figures. Actually, electricity generation cost varies across different territories as per the environmental and technological scenario.

Boston Analytics Research

Innovation in Global Markets: Partia Sychostic Academy of Engineering, March 2004 (213.130.42.236/wna_pdfs/rae-summary.pdf) Mile Fail/260019 the Nation", Parsons Brinckerhoff Ltd, March 2006 (<u>http://www.pbpower.net/inprint/pbpubs/powerthenation/powerthenation.htm</u>) Deech "Solar Energy in SGM, Renewable Energy Modeling Series", Allen Fawcett, December 2004 (http://www.pbpower.act. - Confidential

Electricity generation dynamics

Collaborative Problem Solving & Synthetic Approach

Innovation in Global Markets: Partha S Ghosh MIB Fall 2009

Energy Speech 11 09

Solar Energy has the potential to address our growing energy needs in an environmentally-friendly way

Basic Mechanisms of Solar Energy Conversion¹

Boston Analytics Research

MP Colored Energy Perspective", Nathan S. Lewis, California Institute of Technology, Pasadena, CA

Strictly for The Fletcher School

Poor efficiency and intricate material processing techniques are major issues with the solar cell

Major Issues with a Photovoltaic (PV) Cell ^{1,2,3}

Light

Photovoltaic (PV) cells provide efficiencies as low as 25% Require: New electrolytes and catalysts to improve efficiency of the PV cell

Semiconductor/Liquid Junctions/Photovoltaic

Polycrystalline Si technology in semiconductors is relatively complex.

Flat Plate Si crystalline is better but yet significant development will be required

Boston Analytics Research

1."Global Energy Perspective", Nathan S. Lewis, California Institute of Technology, Pasadena, CA

2. "Solar Energy: The Ultimate Renewable Resource", Bhavik Shah - www.physics.rutgers.edu

3. "Solar Energy Research at the Department of Energy. Big Deal!", Dan Preston, John Stechschulte, Alok Tayi and Dave Zahora - www.mse.cornell.edu

Innovation in Global Markets: *Partha S Ghosh* MIB Fall 2009

Strictly for The Fletcher School

Photo electric cells

Photo electric effect: When light shines on a metal surface, the surface emits electrons.

Fuel Cells works by converting chemical energy to electrical energy On Demand

Basic Mechanism of a Fuel Cell¹

Boston Analytics Research

เกิดงานกระ/พพะพรณาจุดมีได้สะพระอุโคณ รอก/รัก0226711/images/fuel-cell-thumb.jpg

Strictly for The Fletcher School Boston I In of the Mile Fail 2009

Convergence of multiple Technologies is essential

Key Drivers:

Chemical Recipes, assembly processes for designing and manufacturing PAFCs

Technology focused on innovations for system performance, stack/module lifetime and cost reduction

Strictly for The Fletcher School

Fuel Cells have been around since the 19th century: Could we take on the Challenge of commercialization ?

Major Challenges in Using a Fuel Cell^{1,2,3}

Boston Analytics Research

- 1. www.howstuffworks.com
- 2. "Changing the way America drives: WPI chemical engineer works on fuel-cell power", WPI News & Events
- 3. http://www.eere.energy.gov/hydrogenandfuelcells/fuelcells/fc_challenges.html

Not Either Or, it is all about Unification

Innovative systems engineering capacity will be essentialat Macro level Value Proposition to Customers

Innovative systems engineering capacity will be essentialat Micro level as well

Fuel Cell Module

Reducing cost of production of electricity by wind turbines could be a significant challenge

Challenges in Using Wind as a Source of Power^{1,2,3,4}

Varying wind supply require innovative storage solutions

Boston Analytics Research

1. www1.eere.energy.gov/windandhydro/wind_how.html

2. http://www.hawaii.gov/dbedt/ert/wwg/issues.html#intermittency

MPFPD99- Technical Brief, Wind Electricity Generation

3

Enhanced Geothermal Systems (EGS)

Innovation in Global Markets: *Partha S Ghosh* MIB Fall 2009

Energy Speech 11 09

32

Heat Mining: Health & safety concerns due to materials ejecting from the Earth are issues that will need attention

Boston Analytics Research

1. www.darvill.clara.net/altenerg/geothermal.htm#more ,2. www1.eere.energy.gov/geothermal/egs_animation_text.html

3. "Geopowering the West", Susan Norwood, Sept 2, 2004, 4. "Geothermal Energy Development Overview", National

Park Service, US Dept. of Interior

Strictly for The Fletcher School Boston Ana 1. www.dar 3. "Geopow Park Innovation i MIB Fall 2009

Do you know the weight of Air in this class room?

≈200 KG

Innovation in Global Markets: Partha S Ghosh MIB Fall 2009

Energy Speech 11 09

Copyright © 2009 Partha S Ghosh. - Confidential

Do you know how many horse power you have in the Air of your class room ?

16 Horse Power

Technologies to Extract Internal Energy of Air Efficiently

Air as Solar Energy Storage Battery Air Energy is available every where: Day & Night, Rain & Shine or Hot & Cold Reliable, Renewable & Clean Source

A room of size 10'x20'x30': 170m3 of volume x 1.16KG/m3 of density = 200KG of weight

Energy Content in the Air

 $\Delta Q = m.cv.\Delta T$

200Kg x 2.2 x 0.17 Btu/lbm °F x (86 °F-(-473 °F)) /(3412btu/kw)

> 12KiloWatt >16 Horse Power

Heat Pump Liquid Heater

Heat Pump Liquid Heater

Engineering Systems Advanced Solid Modeling Capability

Engineering Tools Include Autocad, Solidworks, Thermal Analysis System, Fortran, C++

Innovation in Global Markets: *Partha S Ghosh* MIB Fall 2009

Energy Speech 11 09

Biofuels Technologies are maturing

Strictly for The Fletcher School

Bio Fuels landscape is complex

Global Market for Biofuels

Biomass Energy development will require a full range of conventional Chemical Technologies

Different Technologies to Harness Biomass Energy^{1,2}

Global Market for Biofuels

Global Biofuels market in 2005 was approximately 13.5B gallons, with the majority of that coming from ethanol

US Energy Potential in 2030

Innovation in Global Markets: Partha S Ghosh MIB Fall 2009

43

Towards an Agro cell based Economic Revolution?

Development of a More Sustainable Economic Model

For Example: An Agro Complex?

Resource	Industry	Critical Issues	Resource	Industry	Critical Issues	
Cereal Crops		Increase in yield (kg /	Chemical Industry			
Fruits ────→		 hectare) Quality and consistency? 	Vegetables			
Tea ────→	Food and	 Distribution system? 	Flowers ───→	Dyes and Pigments	Knowledge sharing and	
Vegetables	Beverage	 Down stream value addition and branding? 	Algae ───→	rightento	 awareness building? Development of low cost process equipment and controls? Storage and distribution system? Economics of scale and cost 	
Aqua Products			Natural Rubber ——>	Polymers and Epoxy Glues		
	Fiber, Fabric	 Cost Effectiveness? Quality consistency? 	Starch ────→			
			Lignins			
Silk →	and	• Familiarity with fashion	Alcohol	Solvent and	competitiveness?	
Jute ——→	Fashion	New application on	Starches ───→	Chemicals		
Bio-mass		development?	Jute Stick Board →		Knowledge sharing	
Wind Farming ——	Eneray	 Knowledge sharing Low cost equipment 	Chip Board	Furniture /	application development?	
Seed Oils		development?Promotional activities?	Renewable Wood →	Constrn.	 Machinery development for rural use? 	
Starches ───→			Sugar Cane		 Development of hot stamping technology? 	
Specialty Chemical	Industry		Straw→	Paper,	Knowledge Sharing and application?	
Heres →	Pharmaceu	Awareness building?	Jute	Board and	Low cost machinery	
 Medical Plants→	ticals and	 Involvement of university professionals? 	Waste Woof Puln →	Packaging	development?Incentives for corporate	
II Algae / Azola	Ayurvedics	Incentives for corporate	Panasaad		sector? Promotion of new application	
	Perfume	 Venture funds "bottom up" 	Lequerella	Oil and	based on agro?	
	Personal	development?	Castor Seed	Lubricants	 Availability of venture funds? Creation of down stream pillars 	
Flowers Innovation in MIB Fall 2009	Care	tha S Ghosh				
Energy Speech 11 09			45	Copyright ©	2009 Partha S Ghosh — Confidenti	

Demand side?

≈ Innovating User Space

Innovation in Global Markets: Partha S Ghosh MIB Fall 2009

Energy Speech 11 09

Demand side Challenge :Shaping social and use behavior?

Strictly for The Fletcher School Innovation in Global Markets: Partha S Ghosh MIB Fall 2009

Energy intensity has been declining with economic advancement

Energy Intensity vs. GDP per Capita of Selected countries (1980 to 2003)^{1,2,3,4}

Aggressive use of New technologies

Energy Industry Reconfiguration

Energy Speech 11 09

Copyright © 2009 Partha S Ghosh. — Confidential

To unlock inefficiencies in existing infrastructure For example India can save almost \$50 Billion

On the demand side significant efficiency opportunities need to be addressed

The proposed increase in efficiency could have saved ~3.4 B barrel crude oil of energy in 2004...

Energy Consumption vs. Equipment (Million Barrel Crude Oil) (2004)^{1,2}

ation in Global Markets: Partha/& Ghosh conservation India could reduce its energy consumption by as much as 45.4% in the year 2025 = 13.3 QB Btu

Reduction in energy intensity could reduce world energy demand by 14% in 2025

World Energy Demand in Quadrillion Btu (2025)¹ :If Energy Intensity is Reduced in Selected Regions

Where a long-haul Class 8 truck's diesel fuel goes ?

Where does a car's gasoline go?

13% tractive load

- \circ 6% accelerates the car, <1% moves the driver
- o 2/3 to 3/4 of the fuel use is weight-related

 \odot Each unit of energy saved at the wheels saves ~7–8 units of gasoline in the tank (or ~3–4 with a hybrid)

• So first make the car much lighter!

Innovation in Global Markets: *Partha S Ghosh* MIB Fall 2009

Strictly for The Fletcher School

Integrating low mass & drag with advanced propulsion saves ~2/3 of demand very cheaply

CARS: save 69%

TWO-WHEELERS: save 20%

TRUCKS: save 65%

6

Technology is improving faster for efficient end-use than for energy supply

Innovation in Global Markets: *Partha S Ghosh* MIB Fall 2009

Energy Speech 11 09

(0)

Networked Intelligence Everywhere = Productivity Gains ?

Convergence Enabled Gateway For Power and Energy Solutions

.. Possibilities are indeed limitless as long as we could stretch the limits that might constrain the Sprit of Enquiry.....

